M15 - Periodic Trends

Target:

I can describe periodic trends and the reasons behind them.

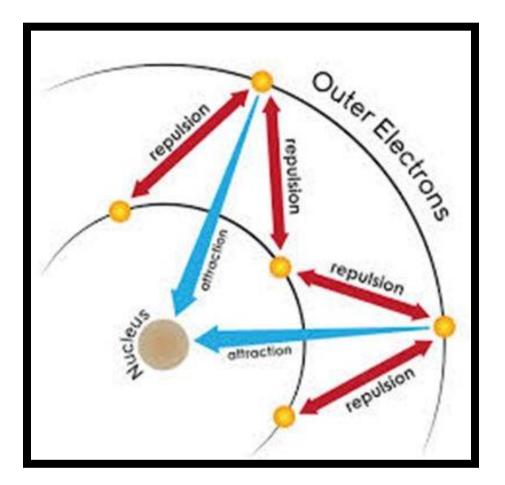
Links to YouTube Presentations:

- Part 1: <u>https://youtu.be/jmy5tlVIFTs</u>
- Part 2: https://youtu.be/ITGOnu_WJ5I

(based on an old version of this lecture - same info just not laid out the same)

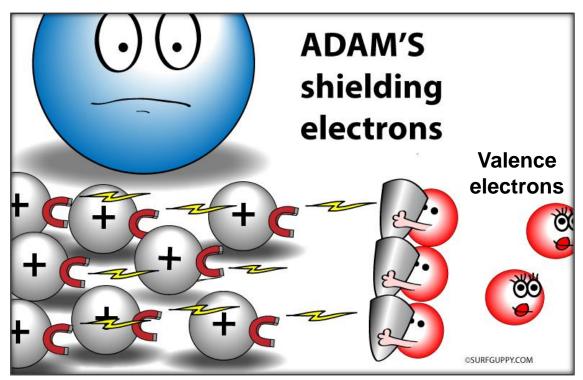
Warning...

- Don't over think this stuff.
- You can talk yourself into backwards answers.
- Focus on the fact that there are only a set number of trends to learn.
- Practice explaining each trend until you can do it in your sleep!
- There will ALWAYS be exceptions. Don't worry about that – focus on the pattern and answer questions based on the patterns.

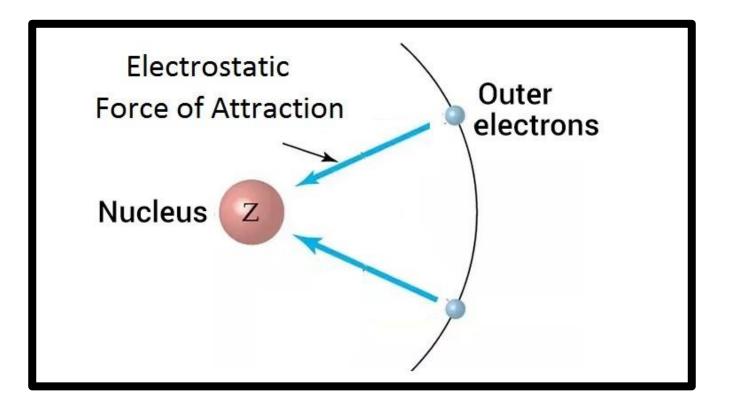

Periodic Jrends

hydrogen 1 H	e 7			đ.		97.C		92			192		555		(62)		- 83 - 7	^{belium} 2 He
1.0079 lithium 3	beryllium 4												boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	4.0026 neon 10
Li	Be												В	C	N	0	F	Ne
6,941 sodium	9.0122 magnesium												10.811 aluminium	12.011 silicon	14.007 phosphorus	15.999 sulfur	18.998 chlorine	20.180 argon
11 No	12												13	14	15	16 S	17	18 A m
Na 22.990	Mg 24.305												AI 26.962	Si	P 30.974	3 2.065	CI 35.453	Ar
potassium 19	cateium 20	1	scandium 21	tilanium 22	vanadium 23	chromium 24	manganese 25	iron 26	coball 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098 rubidium	40.078 stronlium		44.966	47.867 zirconium	50.942 niobium	51.996 molybdenum	54.938 technetium	55.845 ruthenium	58.933 rhodium	58.693 palladium	63.546 silver	65,39 cadmium	69.723 Indium	72.61	74.922 antimony	78,96 tellurium	79.904 lodine	83.90 xenon
37	38		yttrium 39	40	41	42	43	44	45	46	47	48	49	tin 50	51	52	53	54
Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.468 caesium	87.62 barium	Simulat	88.906 lutetium	91.224 hafnium	92.906 tantalum	95.94 tungsten	[98] rhenium	101.07 osmium	102.91 iridium	106.42 platinum	107.87 gold	112.41 mercury	114.82 thallium	118.71 lead	121.76 bismuth	127.60 polonium	126.90 astatine	131.29 radon
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs 132.91	Ba	*	LU 174.97	Hf	Ta 180.95	W 183.84	Re 186.21	OS	Ir	Pt	Au 196,97	Hg	TI 204.38	Pb	Bi	P0	At 1210	Rn
francium 87	radium 88	89-102	lawrencium 103	rutherfordium 104	dubnium 105	seaborgium 106	tohrium 107	hassium 108	meitnerium 109	ununnilium 110	unununium 111	ununbium 112	204.38	ununguadium 114	208.93	1203	210	
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	A CONTRACTOR OF	Uuu	100-0120 J		Uuq				
[223]	[226]	0.0	[262]	[261]	[262]	1266	[264]	[269]	[268]	[271]	[272]	[277]		[289]				
*Lant	hanide	series	lanihanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytlerbium 70		
Lant	lanue	001100	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb		
			138.91 actinium	140.12 Ihorium	140.91 protactinium	144.24 uranium	[145] neptunium	150.36 plutonium	151.96 americium	157.25 curium	158.93 berkelium	162.50 californium	164.93 einsteinium	167.26 fermium	168.93 mendelevium	173.04 nobelium		
* * Act	**Actinide series		89	90	91	92	93	94	95	96	97	98	99	100	101	102		
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
			[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]		_

Factors that contribute to trends we see on the periodic table


EVERYTHING is about...

- Attractions
- Repulsions


Shielding Effect

- Inner shell electrons repel the outer valence electrons
- Keeps valence e⁻ from feeling the full attractive force of the nucleus.

Effective Nuclear Charge (Z_{eff})

 The <u>relative</u> attraction the valence electrons have for the protons in the nucleus

Effective Nuclear Charge (Z_{eff})

Adding a proton has a larger effect than adding an electron

Effective Nuclear Charge (Z_{eff})

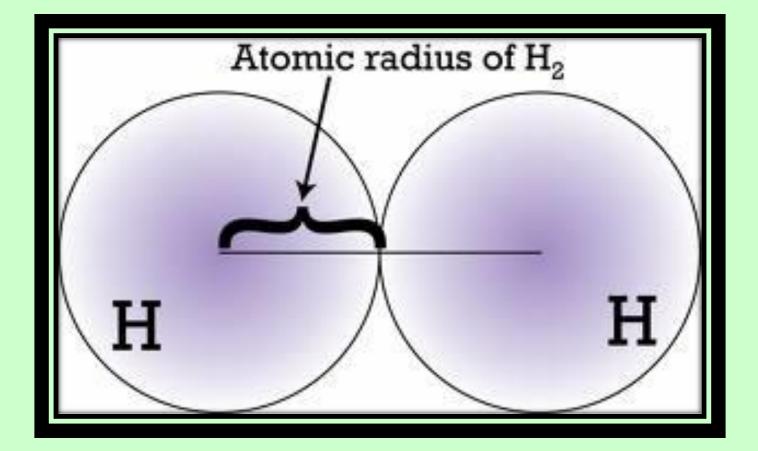
 The relative attraction the valence electrons have for the protons in the nucleus

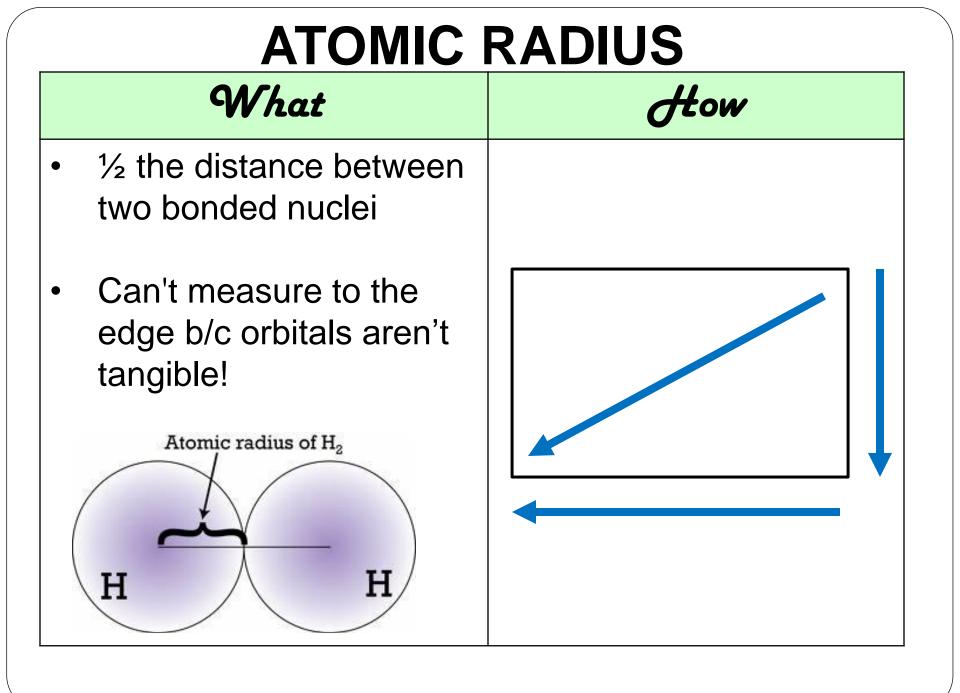
- **Z** = nuclear attraction = # protons
- S = the core/inner e- shielding the valence e-'s
 = the total number of e- minus the e- in the highest occupied s and p energy levels

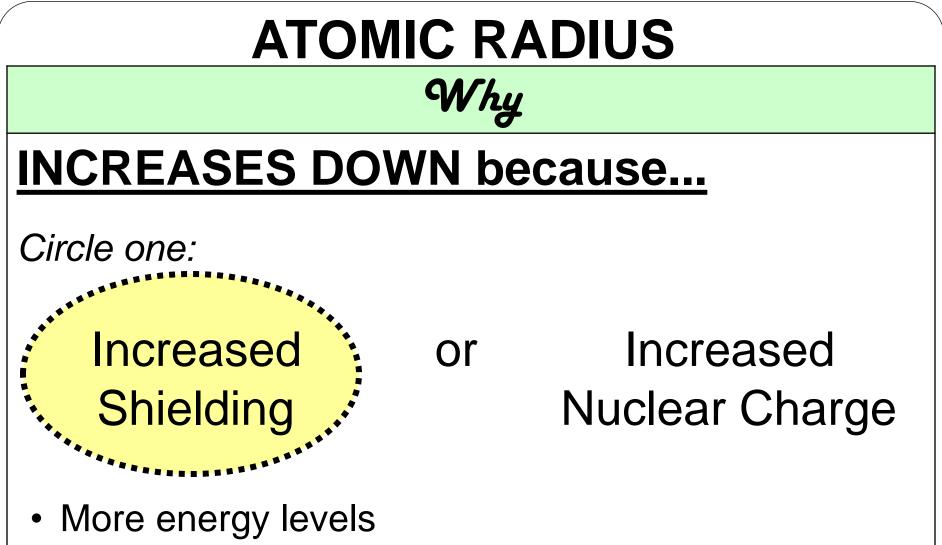
Calculating Effective Nuclear Charge

$$Z_{eff} = Z - S$$

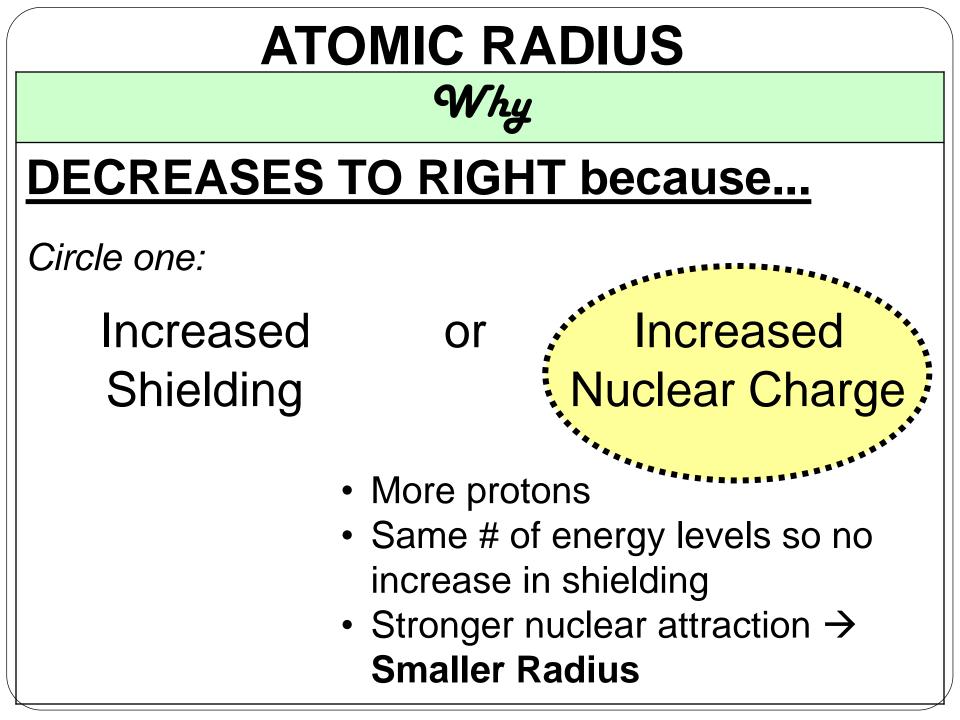
Magnesium

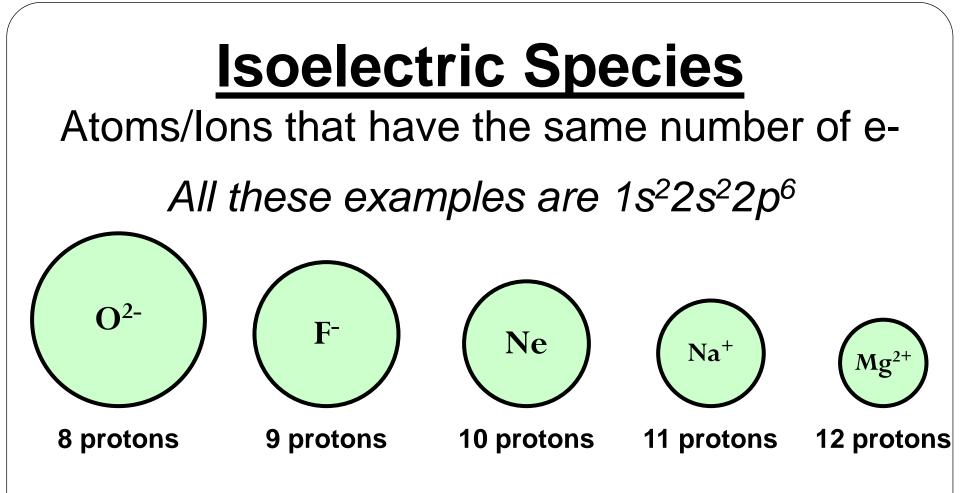

Z = 12 protons $S = (12 \text{ total } e^{-}) - (2 \text{ valence } e^{-}) = 10 \text{ core } e^{-}$ $Z_{\text{eff}} = 12 - 10 = 2$


Aluminum

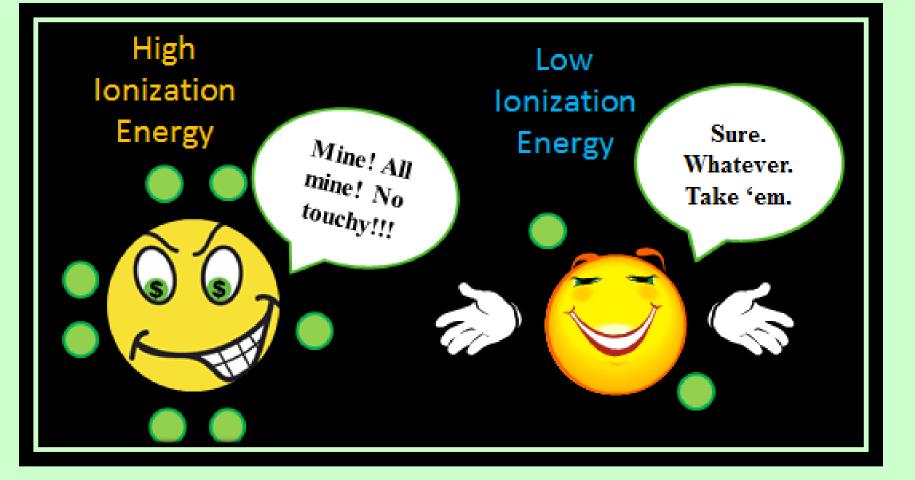

Z = 13 protons
S = = (13 total e⁻) – (3 valence e⁻) = 10 core e⁻ Zeff =
$$13 - 10 = 3$$

Aluminum is smaller in radius! Valence electrons are pulled in harder by the nucleus





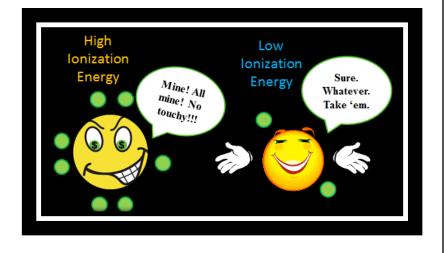
- v.e⁻ Further from nucleus
- More shielding
- Less attraction → Larger Radius

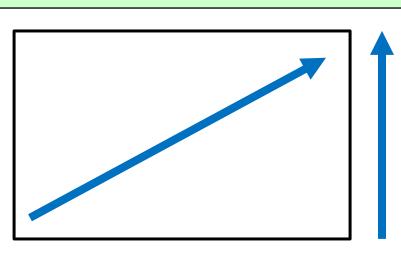

IONIC RADIUS

Lation	Anion											
 Lost electrons Always smaller than their neutral atom 	 Gained electrons Always bigger than their neutral atom 											
 Reduced e- repulsions Nucleus pulling on fewer e⁻ May even drop down an energy level! 	 Extra valence e- more repulsions bigger 											

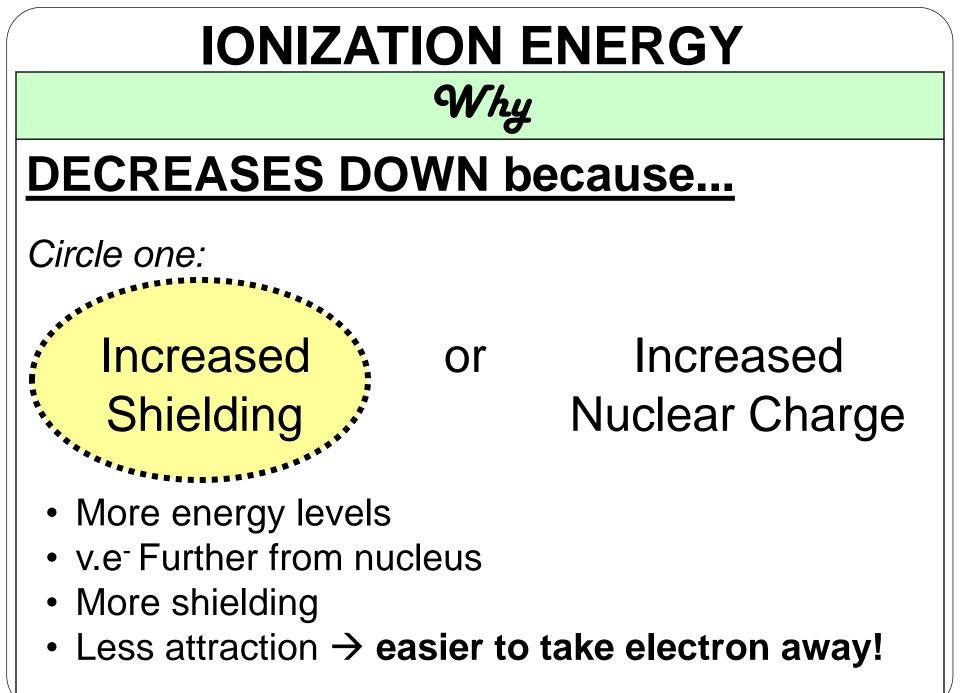
- Increased protons pull harder on valence electrons - "Greater effective nuclear charge"
- Radius ends up smaller

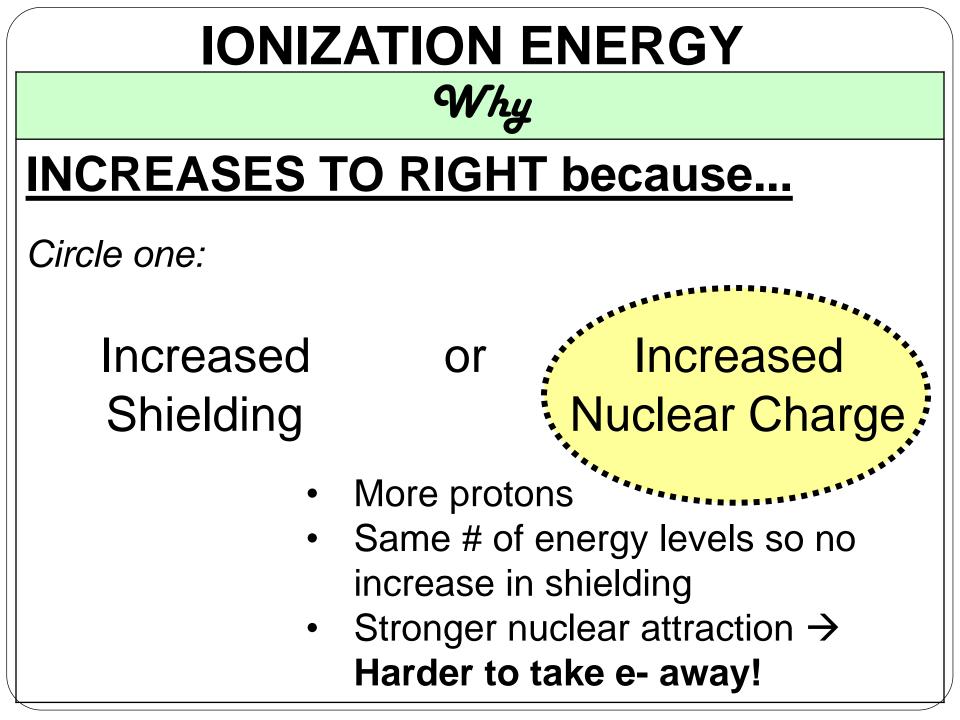
Sonization *Energy*



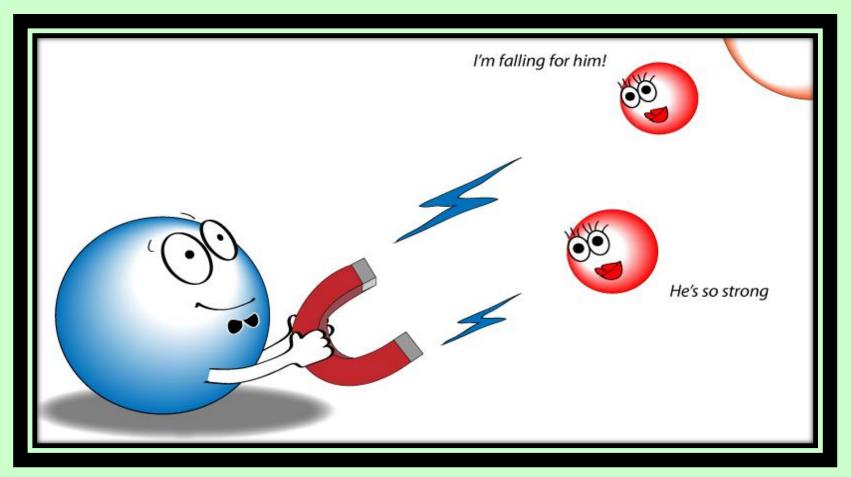

IONIZATION ENERGY

What




The energy required to remove one electron from a neutral atom of an element

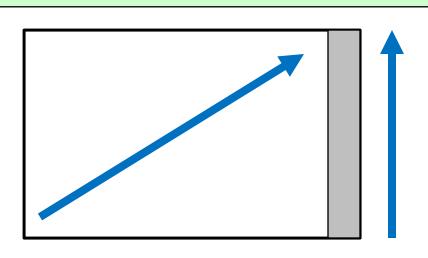
Noble Gases are HIGHEST! They REALLY don't want to let go of an e-



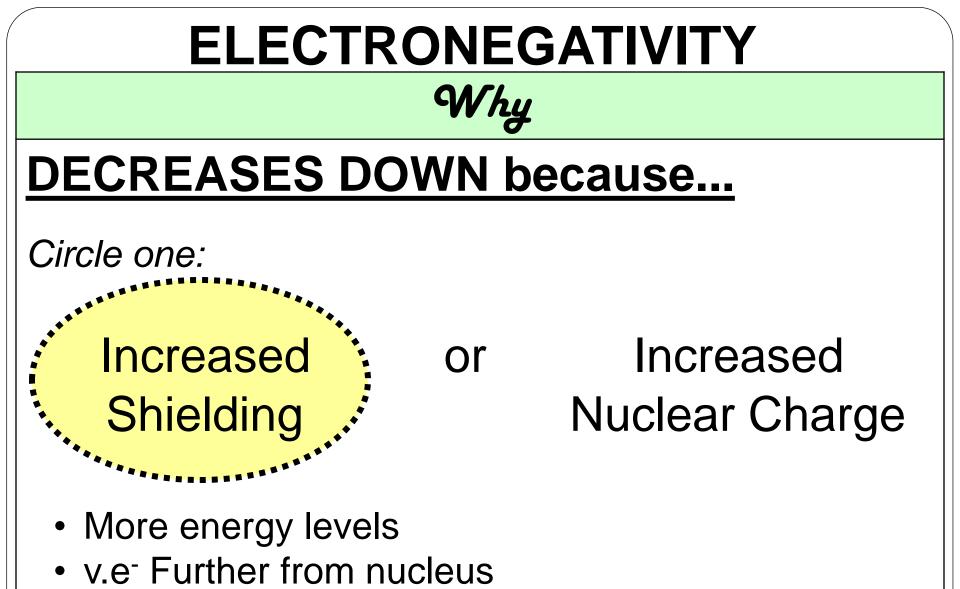
Subsequent Ionizations

- Each time e- removed \rightarrow harder to take next one.
- Radius is getting smaller → increased attraction
- HUGE LEAP in I.E. once it's achieved noble gas configuration
 - why would it want to lose another one?!

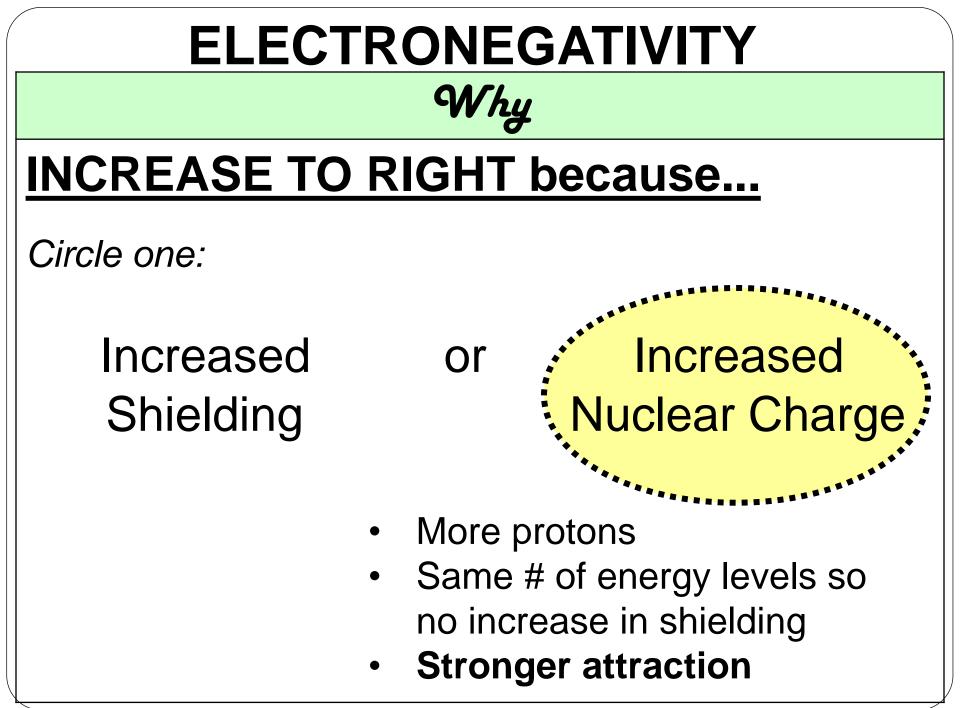
Element	IE ₁	IE ₂	IE ₃	IE ₄
Na	496	4560		
Mg	738	1450	7730	
AI	578	1820	2750	11,600


ELECTRONEGATIVITY

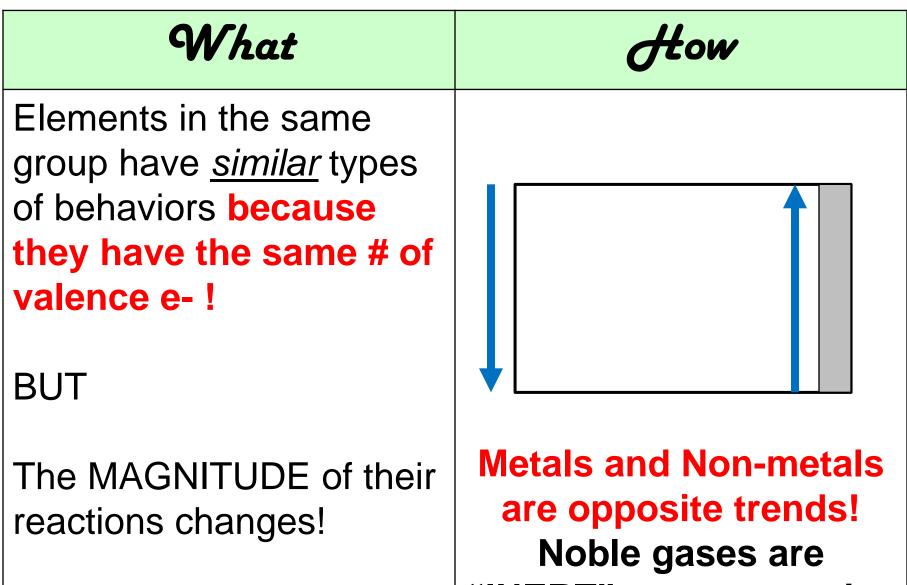
What



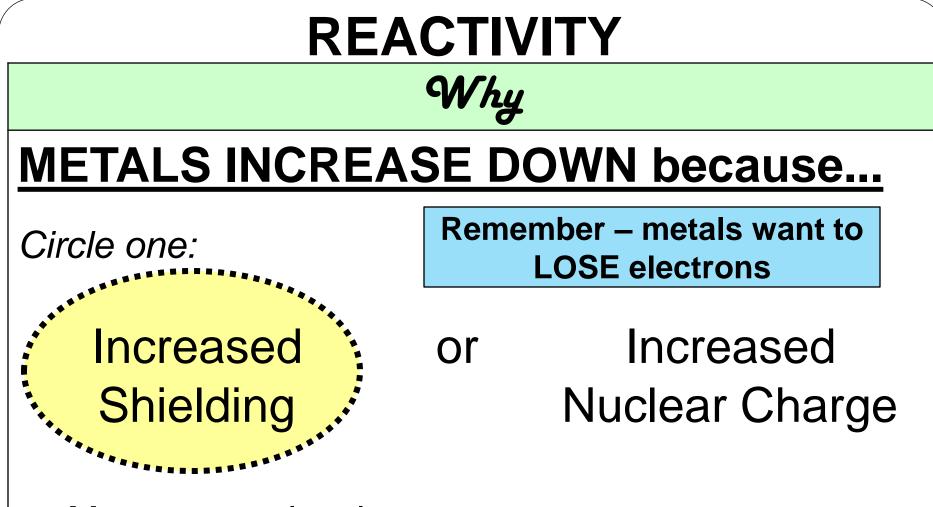
A measure of the ability of an atom in a chemical compound to attract electrons from another atom in the compound

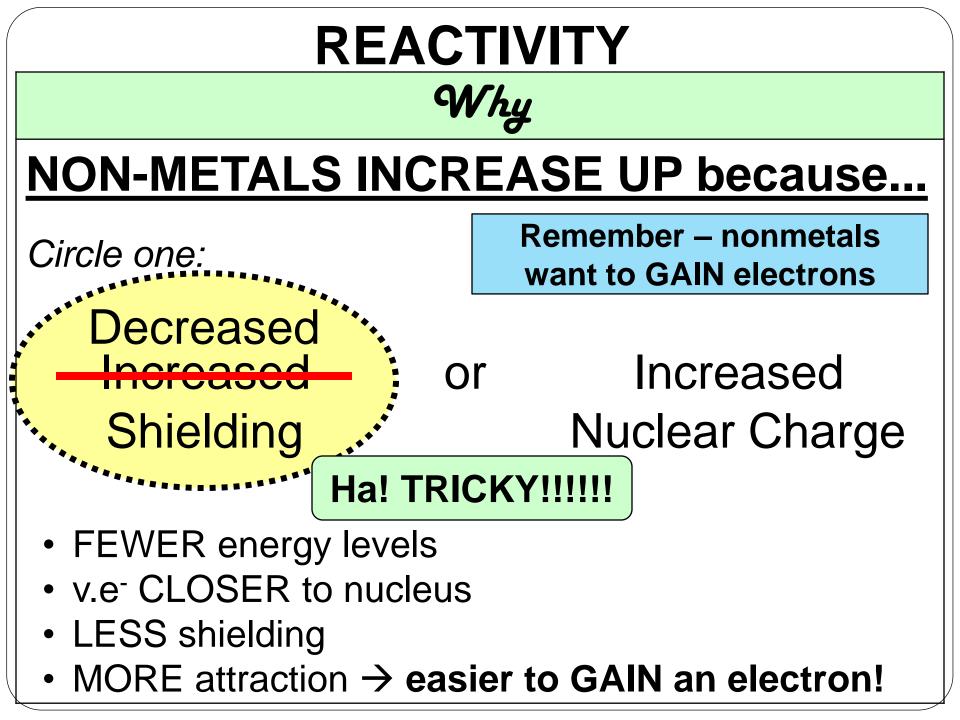

How strongly can one atom pull on the electrons being shared in a bond.

Noble Gases are LOWEST! They DON'T CARE about attracting electrons!



- More shielding
- Less attraction

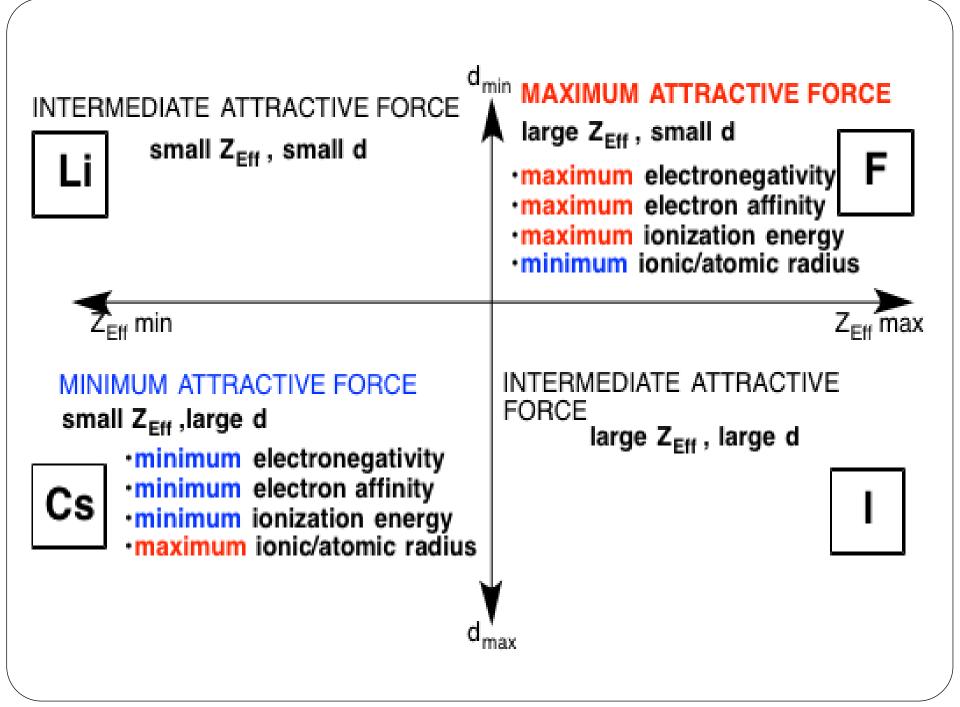



REACTIVITY

"INERT" or non-reactive

- More energy levels
- v.e⁻ Further from nucleus
- More shielding
- Less attraction → easier to LOSE an electron!

IONIZATION ENERGY ELECTRONEGATIVITY ELECTRON AFFINITY* EFFECTIVE NUCLEAR CHARGE - Z_{EFF}


							R/	٩D)IU	S								
	1A								- •									8A
	1 H																	2 He
	1.00794	2A	<u></u>														7A	4.002602
\mathbf{O}	3	4											5	6	7	8	9	10
7	Li	Be											в	С	N	ο	F	Ne
	6.941	9.012182											10.811	12.0107	14.0067	15.9994	18.9984032	20.1797
-DING	11	12											13	14	15	16	17	18
	Na	Mg	0.0	40	60	CD	70		0.0		40	00	AI	Si	Р	S	CI	Ar
	22.989769	24.3050	3B	4B	5B	6B	7B		— 8B —		1B	2B 30	26.9815386	28.0855	30.973762	32.065 34	35.453	39.948
	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	Zn	31 Ga	32 Ge	33 As	Se	35 Br	36 Kr
SHIE	39.0983	40.078	44.955912	47.867	50.9415	51.9961	54.938045	55.845	58.933195	58.6934	63.546	65.38	69.723	72.64	74.92160	78.96	79.904	83.798
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
T I	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
0	85.4678	87.62	88.90585	91.224	92.90638	95.96	[98]	101.07	102.90550	106.42	107.8682	112.411	114.818	118.710	121.760	127.60	126.90447	131.293
"	55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba		Hf	Та	w	Re	Os	lr	Pt	Au	Hg	ті	Pb	Bi	Po	At	Rn
	132.9054519	137.327	Lanthanides	178.49	180.94788	183.84	186.207	190.23	192.217	195.084	196.966569	200.59	204.3833	207.2	208.98040	[209]	[210]	[222]
	87	88 Do	89-103	104	105	106	107 Db	108	109	110 Do	111	112	113	114	115	116	117	118
	Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo

RADIUS

IZATION ENERGY ECTRONEGATIVITY ECTRON AFFINITY

П

NIZATION

<u>Brainiac Video</u> – note: they augmented the reactions, but it is such a fun, silly, memorable video I think it is still worth watching O

<u>Disposal of Sodium</u> – old footage from WWII. Neat to see such old footage and how they actually disposed of the sodium after the war!

<u>Crash Course</u> – Periodic Table episode

Quick summary. Also has a quick but good explanation of some <u>exceptions</u> to the trends

https://www.youtube.com/watch?v=hePb00CqvP0

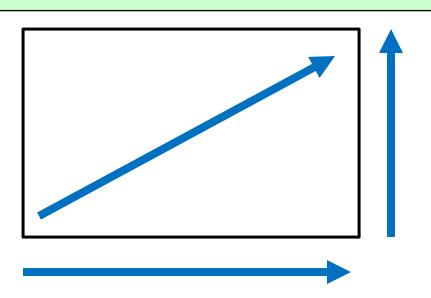
YouTube Link to this Presentation

(these are based on an old version of this lecture – same info just not laid out the same way we did in class)

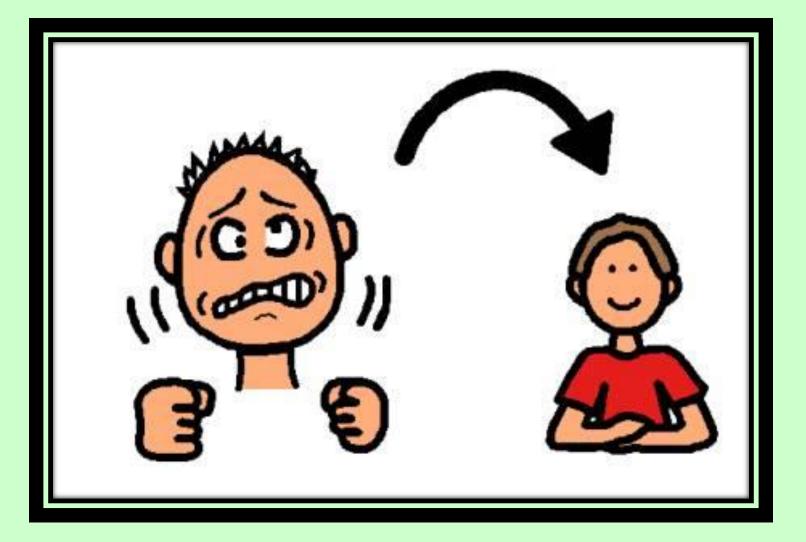
Part 1: https://youtu.be/jmy5tlVlFTs

Part 2: <u>https://youtu.be/1TGOnu_WJ51</u>

Things past this slide are not being taught this year


ELECTRON AFFINITY

What



How much energy is released when the atom gains an electron to make a negative ion.

How much stability does it gain once it is an anion. More energy released – more stable.

Noble Gases are LOWEST! They DON'T CARE about attracting electrons!

ELECTRON AFFINITY

Why

DECREASES DOWN

- Electrons are further from nucleus in higher energy levels
- Increased shielding from core e-'s causes the nucleus to not pull as hard on valence e-'s
- So atom doesn't notice as much if it gains an electron – doesn't gain much stability

INCREASES TO RIGHT

 Closer to filling valence shell – noble gas configuration is most stable